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SUMMARY

A multidimensional discretisation of the shallow water equations governing unsteady free-surface flow is
proposed. The method, based on a residual distribution discretisation, relies on a characteristic eigenvec-
tor decomposition of each cell residual, and the use of appropriate distribution schemes. For uncoupled
equations, multidimensional convection schemes on compact stencils are used, while for coupled
equations, either system distribution schemes such as the Lax–Wendroff scheme or scalar schemes may
be used. For steady subcritical flows, the equations can be partially diagonalised into a purely convective
equation of hyperbolic nature, and a set of coupled equations of elliptic nature. The multidimensional
discretisation, which is second-order-accurate at steady state, is shown to be superior to the standard
Lax–Wendroff discretisation. For steady supercritical flows, the equations can be fully diagonalised into
a set of convective equations corresponding to the steady state characteristics. Discontinuities such as
hydraulic jumps, are captured in a sharp and non-oscillatory way. For unsteady flows, the characteristic
equations remain coupled. An appropriate treatment of the coupling terms allows the discretisation of
these equations at the scalar level. Although presently only first-order-accurate in space and time, the
classical dam-break problem demonstrates the validity of the approach. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow water equations (SWE) describe the motion of unsteady free-surface flows
subjected to gravity forces, such as atmospheric and oceanographic flows, mountain torrents,
coastal rivers and estuary flows, tsunamis and flows resulting from the collapse of hydraulic
dams. The SWE are the hydraulic analogue of the Euler equations of gas dynamics [1]. In
particular, they admit discontinuous solutions, called hydraulic jumps, which are the analogue
of shock waves, with a correspondence between the water elevation h (SWE) and the gas
density r (Euler equations).

As a result of the analogy between the equations of gas dynamics and the SWE, it is
tempting to apply the same successful methods developed for gas dynamics problems to
hydraulic problems governed by the SWE. The MacCormack scheme in particular seems to
have been very popular among hydraulic engineers. Recently, several applications of the flux
difference splitting scheme of Roe to the SWE have been proposed [2–5]. Finite element
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schemes based on the Taylor–Galerkin method (the finite element version of the ‘Lax–Wen-
droff’ scheme) have also been developed [6,7]. Genuinely multidimensional upwind discretisa-
tion based on ‘simple wave models’ have been reported in References [8,9], with promising
reports for supercritical flows. However, wave models which use gradient-dependent directions
often suffer from convergence problems. Furthermore, as for the Euler equations, wave
model-based methods are ill-suited for subcritical flows [10]. Indeed, recasting the three
equations of the shallow water system into a set of five or six convective equations correspond-
ing to the different waves, and discretising each one of them using a scalar upwind scheme,
leads to excessive dissipation. The key property that a multidimensional residual decomposi-
tion should possess is the so-called ‘linearity preserving’ (LP) property which guarantees
second-order-accuracy at steady state (but presently only first-order-accuracy for unsteady
flows). The models described in Reference [8] do not satisfy this property and it is one of the
objectives of this paper to improve on this aspect.

The method proposed in this paper is based on a multidimensional characteristic-based
‘diagonalisation’ of the equations which, by construction, satisfies the LP property. The
method, which uses the flow angle and where defined, the Froude angles (analogous to the
Mach angles in compressible flow) as upwinding directions, is an extension of the ‘hyperbolic/
elliptic’ splitting described in Reference [11] for the Euler equations. Steady subcritical and
supercritical flows are simulated using this approach. For the subcritical example, a compari-
son is made with a standard Lax–Wendroff residual distribution scheme, showing the benefit
of the multidimensional discretisation. For the supercritical example, a hydraulic jump is
simulated and captured in a sharp and non-oscillatory way. Although finite volume total
variation diminishing (TVD) methods perform just as well on such a test case, it must be
realised that the methods described here use compact finite element type stencils and do not
explicitly make use of limiter functions to guarantee positivity. Furthermore, the multidimen-
sional schemes are robust and can handle severely distorted meshes with very little loss of
accuracy [12]. LP models can also be developed for unsteady flows, for which the equations
remain coupled. A characteristic-based model is proposed and applied to the classical
dam-break problem, in which the flow resulting from the partial collapse of a hydraulic dam
is simulated. Although presently only first-order-accurate in space and time, the method
compares well with standard finite volume schemes.

2. THE SHALLOW WATER EQUATIONS

The SWE in conservative form are given by:
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where U is the vector of conservative variables, and F and G are the fluxes,
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h is the depth of water, u and 6 are the depth-averaged velocity components, and g is the
acceleration due to gravity, g=9.81 m s−2. S is a source term, accounting for friction losses
and bed slopes. In the present study, only the homogeneous case is considered (S=0). In
quasi-linear form, the equations take the following form:
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with the Jacobian matrices A=(F/(U and B=(G/(U :
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where a=
gh represents the shallow water wave speed. The ratio Fr=V/a, where V=

u2+62, is a non-dimensional number called the Froude number, which is the analogue of
the Mach number in compressible gas dynamics. Like the Euler equations, the SWE form a
hyperbolic system, so that the Jacobian matrix C=A cos u+B sin u has real eigenvalues and
eigenvectors for all values of u. These are given by:

l1=u cos u+6 sin u, l2=u cos u+6 sin u+a, l3=u cos u+6 sin u−a, (5)
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3. ONE-DIMENSIONAL CASE

In one dimension (u=0), the flux difference splitting scheme of Roe [2–5] can be recast as a
fluctuation splitting scheme. Assuming forward Euler time stepping, it takes the form:
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with b i
[xi−1,xi ],l=max(0, ll)/ll and b i

[xi ,xi+1],l=min(0, ll)/ll are scalar distribution coeffi-
cients, defined for each wave. For conservation, the eigenvalues and eigenvectors in cell
[xi−1, xi ] are evaluated at the Roe-average state [2]:
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and similarly for the average state in cell [xi, xi+1]. Note that these expressions are not the
same as those derived for the Euler equations, and do not generalise to 2D. This is better
understood by examining how the average state U. is derived. Explicitly writing out the
conditions for the Roe-linearisation (known as property U):

DF=A(U. )DU, (10)

U. (U, U)=U, (11)
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where D( · )= ( · )R− ( · )L, this becomes:

uRhR−uLhL=1× (uRhR−uLhL), (12)
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Separating the gravity terms from the convective terms, this becomes:
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The equation in h. yields the solution h. = (hR+hL)/2. The quadratic equation in û has two roots,
only one of which reduces to u when uR=uL=u and hR=hL :
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4. TWO-DIMENSIONAL CASE

To extend the fluctuation-splitting formulation to the 2D SWE, a conservative linearisation must
be sought, such that for every triangular cell:

FT=
7
(T

F dy−G dx=ST [A(U. )Ux+B(U. )Uy ], ÖT, (17)

where ST is the area of cell T. It is obvious that the trick of separating the gravity terms from
the convective terms no longer works. Instead, a global solution (h. , û, 6̂) of this system must
be defined. Assuming the left-hand-side (LHS) is known (it can be evaluated by the trapezium
rule of integration), the following system must be solved:

LHS1= (gh. − û2)hx+2û(hu)x− û6̂hy+ 6̂(hu)y+ û(h6)y, (18)

LHS2= − û6̂hx+ 6̂(hu)x+ û(h6)x+ (gh. − 6̂2)hy+26̂(h6)y. (19)

If h. is the arithmetic average over the cell, h. = (hi+hj+hk)/3 (i, j and k denote the vertices of
the cell), a non-linear system of two equations in two unknowns (û, 6̂) remains, which may be
solved using a Newton-type procedure. This linearisation is similar to the linearisation of Abgrall
[13], derived for the Euler equations. Although conceptually straightforward, convergence
problems were encountered when solving this system, especially in regions of uniform flow.
Thus, results presented in this work were obtained using a non-conservative linearisation,
basically the formal extension of the 1D linearisation,
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In Reference [9], source terms were added to correct for the difference between the exact
contour integral and the quasi-linear form evaluated at the parameter average state. In the
present work, no such correction was added, as it did not prove detrimental to either accuracy
or convergence (see Section 5.1).
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4.1. Multidimensional upwind schemes for scalar con6ection

The second step of the extension of the method to two dimensions concerns the development
of upwind distribution schemes for the scalar convection equation,

(W
(t

+lb ·9W=0. (21)

The residual or ‘fluctuation’ fT is obtained by integrating this equation over a triangular cell
T :

fT=
&&

T

lb ·9W dV. (22)

In the residual distribution approach, fractions of fT are distributed to the vertices of the cell,
with scalar coefficients b i

T, summing up to one for consistency. After assembling contributions
from all the cells, each nodal value can be updated as:
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n+1=Wi
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Dt
Si

%
T

b i
TfT, (23)

where Si represents the area of the median dual cell around node i, and the forward Euler
explicit time marching scheme was used. Both linear and non-linear upwind distribution
schemes on unstructured triangular meshes, have been developed over the past years [14], with
built-in properties such as positivity and linearity preservation (second-order-accuracy at
steady state). A new interpretation of the PSI scheme is given here, which is a non-linear,
positive and linearity preserving fluctuation splitting scheme. This interpretation is derived
from Sidilkover and Roe’s formulation for non-linear finite volume and fluctuation splitting
schemes [15]. Assuming constant convection speed lb and linear variations of W over a
triangular cell, the residual fT may be expressed as:

fT=STlb ·9W= %
3

i=1

kiWi
n, (24)

Figure 1. Triangle and inward normals n� i.

Figure 2. One-target case (left) and two-target case (right).
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Figure 3. Rotational convection problem: distorted mesh (top) and solution isolines of the first-order upwind FV
scheme (middle) and PSI scheme (bottom).

Figure 4. Supercritical mountain torrent: water elevation, Froude number and convergence history (E=Resi,1L�
),

obtained with the hyperbolic/elliptic splitting and the PSI scheme.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 987–1000 (1998)
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where ST is the area of the cell, and ki is called the inflow parameter, and is defined as
ki=1/2 lb ·n� i, n� i being the inward normal opposite node i and scaled by the length of the edge
(Figure 1). �i=1

3 n� i=0a , therefore, �i=1
3 ki=0. ki\0 signifies that i is a downstream node (or

target node) of the triangle, and should therefore receive a contribution. In the two-target
situation sketched in Figure 2, where i and j denote the two downstream modes, a linear
positive scheme, called the N scheme, is given by:

b i
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n), b j

NfT=kj(Wj
n−Wk

n). (25)

This scheme is not linearity preserving, since fT=0 ⁄[b i
NfT=0, b j

NfT=0. This is equivalent
to the statement that the distribution coefficients of the N scheme are unbounded. On the
other hand, an LP scheme can be obtained by limiting the distribution coefficients, i.e. by
applying a limiter function C(r) to the unbounded coefficients b i

N:

b i
lim=C(b i

N), where b i
N=

ki(Wi
n−Wk

n)
fT . (26)

Of course, the distribution coefficients to the two downstream nodes must add up to one for
consistency. This implies that C(r)+C(1−r)=1, a property satisfied by the minmod limiter,
C(r)=max(0, min(1, r)). It can be easily verified that the resulting scheme is identical to the
PSI scheme proposed in [14]. In Figure 3, a comparison between the PSI scheme and the
first-order upwind finite volume scheme (on the dual mesh) is shown. The comparison is
significant because both schemes share the same compact stencil, and require the same
computational effort. However, the PSI scheme combines both positivity and linearity preser-
vation, and produces much more accurate solutions, even on severely distorted meshes.

4.2. ‘Hyperbolic/elliptic’ splitting model

The motivation for developing multidimensional upwind schemes for hyperbolic systems of
equations, is to incorporate into the scheme the mechanisms by which information travels. For
steady supercritical flow, the SWE behave much like the Euler equations, in the sense that the
equations take on a purely convective character (they can be completely diagonalised), and
disturbances propagate within a cone of dependence, defined by the Froude angles:

tan u=
91


Fr2−1
. (27)

Figure 5. Subcritical flow past a row of circular bridge pillars: unstructured mesh.
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Figure 6. Subcritical flow past a row of circular bridge pillars: Froude number isolines (DFr=0.01) obtained with the
Lax–Wendroff scheme on the full system (top, Frmin=0.0013 and Frmax=0.2685) and with the hyperbolic/elliptic

splitting (bottom, Frmin=0.0001 and Frmax=0.2534).

Indeed, rewriting the steady SWE in the streamwise co-ordinate system (j, h), with some
manipulation they become:
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where (H0=1/h (a2− ũ2) (h+1/h ũ (ũh, and (C+ ,− =9 (a2− ũ2)/
Fr2−1 (h+Fr (6̃ (ũ
and 6̃ are the components of u� in the (j, h) co-ordinate system). The quantity (H0, is actually
the exact differential expression of the total energy H0=gh+V2/2, consisting of the potential
energy gh and the kinetic energy V2/2. At steady state, similar to entropy and total enthalpy
in the case of the Euler equations, H0 is conserved along streamlines. The gravity wave
variables C+ and C−, remain constant along the Froude lines. For subcritical flows, these are
no longer defined, and the equations in the variables ((h, (6̃) become coupled, taking on a
purely elliptic character. In summary, a splitting can be derived, similar in principle to the
‘hyperbolic/elliptic’ splitting derived for the Euler equations [11], incorporating the following
features:
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� convection of total energy H0 along streamlines and discretisation of this equation using an
upwind convection operator (PSI scheme);

� in supercritical flow, convection of characteristics C+ and C− along the Froude lines and
discretisation of these equations using an upwind convection operator (PSI scheme);

� in subcritical flow, coupling of the gravity wave equations and discretisation using a system
distribution scheme such as the Lax–Wendroff scheme. For a system written in quasi-linear
form (3), the Lax–Wendroff distribution matrices Bi

T take the following form [16]:
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1
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corresponding to the update scheme:
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4.3. Characteristic decomposition model

A multidimensional decomposition model, inspired by the characteristic decomposition
method of Deconinck, Hirsch and Peuteman [17] and the ‘pseudo Mach angle’ approach
described in Reference [10], is obtained by defining a vector of characteristic variables
(W=L*(U depending on two parameters (u, c):
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where 6=cos u cos c+sin u sin c. Substituting this into the system of SWE, an approximate
diagonalisation is obtained, leading to the expression of the flux divergence:
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where lb l are the characteristic ray speed vectors, given by:
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1a x and 1a y are the unit vectors in the x- and y-directions, respectively. The ql are coupling
terms, corresponding to the off-diagonal terms of the matrices L*AR* and L*BR*. In
supercritical flows, the angle u is taken to be equal to the Froude angle (sin u=1/Fr), and in
subcritical flow, it is taken to be equal to a ‘pseudo Froude angle’ (tan u=1/
1−Fr2). To
maximise the determinant of the transformation, c is taken to be equal to u (6=1). Each
scalar equation is then discretised using an upwind convection scheme, such as the PSI scheme.
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4.4. Boundary conditions

The flow tangency condition at the wall is imposed through a strong characteristic
formulation. The nodal residual at a boundary point is first obtained by looping over the
interior cells. Then, a correction is added in the form of a gravity wave, whose intensity is such
that the condition Du� ·n� =0 is satisfied.

At a subcritical inlet, two conditions must be imposed. In this case, it was decided to impose
the total energy H0=gh+V2/2, as well as the flow angle a. The flow velocity V=
u2+62

is extrapolated from the interior domain.
At a subcritical outlet, one physical condition must be applied. The water elevation h was

chosen for this work, and the other variables, namely hu and h6 are extrapolated from the
interior.

4.5. Time integration schemes

In this work, a multistage Runge–Kutta scheme was implemented, consisting of four stages:

U (0)=Ui
n,

U (p)=U (0)−a (p) Dt
Si

Resi(U (p−1)), p=1, 2, 3, 4, (39)

Ui
n+1=U (4).

For steady state calculations, the time step Dt was defined locally so as to satisfy the local
stability condition. For unsteady flow computations, a constant time step Dt was used, based
on the stability condition determined from the initial conditions:

Dt5
minT
ST


g maxihi

. (40)

It should be pointed out that the LP residual distribution schemes described in Section 4.1 are
only second-order-accurate in space at steady state, while their space accuracy reduces to
first-order for unsteady problems (see e.g. Reference [18]). This deficiency can, however, be
remedied by the use of a consistent mass matrix formulation, as shown in a recent study by
Deconinck and Degrez [19], but requires an implicit solver.

5. NUMERICAL RESULTS

5.1. Oblique hydraulic jump

The supercritical flow (Fr=2.5) in a 5° contracting channel is simulated. As explained
previously (‘hyperbolic/elliptic’ splitting), the SWE diagonalise completely in this case, and the
use of positive, high-order shock-capturing scalar convection schemes such as the PSI scheme,
leads to monotone and accurate solutions. Figure 4 shows a carpet plot of the water elevation
h and the isolines of the Froude number computed by this diagonalisation approach, as well
as the convergence history of the L� norm of the first component of the nodal residual Resi,
as defined in Equation (39), i.e. of the nodal residual of the continuity equation. Note that the
nodal residual is the discretisation of the divergence of fluxes (minus the source term when
present) and is therefore independent of the time step, as well as of the time stepping
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algorithm. The numerical value of the water height downstream of the reflected shock is found
to be 1.5270, which is very close to the exact value of 1.5273 found by the Rankine–Hugoniot
jump relations. Thus, the conservation error made in the linearisation process remains very
small, as also remarked in Reference [9].

Figure 7. Subcritical flow past a row of circular bridge pillars: water elevation contours (Dh=10−3 m) obtained with
the Lax–Wendroff scheme on the full system (top, hmin=0.9662 m and hmax=1.0049 m) and with the hyperbolic/el-

liptic splitting (bottom, hmin=0 9662 m and hmax=1.0049 m).

Figure 8. Geometry of dam-break problem and unstructured mesh, consisting of 1906 vertices and 3600 cells.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 987–1000 (1998)
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Figure 9. Carpet plot of water elevation and velocity vectors at time t=7.2 s.

Figure 10. Isolines of water elevation (left, hmin=4.05 m, hmax=10.0 m and Dh=0.1 m) and Froude number (right,
Frmin=0.0, Frmax=1.01 and DFr=0.02), at time t=7.2 s.

5.2. Subcritical flow past a row of circular bridge pillars

The steady subcritical flow (Fr=0.1) past a row of circular bridge pillars is computed. The
mesh which consists of 3500 vertices is shown in Figure 5.

Figures 6 and 7 show Froude number and water elevation contours for two different
decomposition models/distribution schemes, namely the Lax–Wendroff distribution scheme on
the full system of equations on one hand, and the hyperbolic/elliptic splitting model with PSI
discretisation of the uncoupled convection equation for H0 and Lax–Wendroff discretisation
of the 2×2 coupled gravity wave system on the other hand. As observed previously for the
Euler equations [11,12], the latter model is seen to be much less dissipative, as indicated by the
much more symmetric character of the solution. It should be stressed that this reduced
dissipation is due to the uncoupling of the convection equation for H0 rather than the use of
the PSI distribution scheme on the latter equation. In fact, using a linear LP scheme such as
the LDA scheme or the scalar Lax–Wendroff scheme on this equation would further reduce
dissipation, at the expense of the loss of the positivity property which ensures the absence of
spurious oscillations of H0.

5.3. Two-dimensional dam-break problem

To demonstrate the applicability of the residual distribution schemes to unsteady problems,
keeping in mind the accuracy limitation of the formulation as discussed in Section 4.5, the

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 987–1000 (1998)
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sudden break of a hydraulic dam is now simulated. This test case has been computed in several
recent papers [2,3,5], and allows the comparison of the multidimensional method with upwind,
dimensionally split solvers, for a similar number of grid points. The geometry of the problem
is illustrated in Figure 8: at time t=0, a 75 m long breach in the wall of the dam is created,
releasing a vast quantity of water (tailwater/reservoir height ratio is 0.5) which spreads in all
directions. The purpose of the simulation is to predict the two-dimensional propagation of the
bore.

The carpet plot and isolines of the solution at t=7.2 s are plotted in Figure 9 Figure 10.
Despite the first-order space accuracy of the present formulation, the solution agrees well with
previous studies [3,5], whereas the solution of Glaister [2] does not predict the water
accumulation on the right wall in the same manner.

6. CONCLUSIONS

In this study, a multidimensional discretisation of the SWE was proposed, based on character-
istic decomposition methods and upwind convection schemes. A conservative linearisation was
proposed, but not implemented. This aspect requires further investigation. It was noted that
the 1D Roe linearisation does not extend naturally to 2D, unlike for the Euler equations.
Numerical results were shown, illustrating the ‘hydraulic jump’ capturing capability of the
scheme, as well as its ability to compute subcritical flows. Finally, a time-dependent problem,
namely the partial collapse of a hydraulic dam, was simulated. The results obtained with the
present method are in good qualitative agreement with published results obtained using
dimensionally-split schemes.
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